
pytftb Documentation
Release 0.0.1

Jaidev Deshpande

Aug 22, 2022

CONTENTS

1 Introduction to PyTFTB 3
1.1 About PyTFTB . 3
1.2 Comparison of TFTB and PyTFTB . 3
1.3 Quick Start . 3

2 Non Stationary Signals 13
2.1 Frequency Domain Representations . 13
2.2 The Heisenberg-Gabor Inequality . 13
2.3 Instantaneous Frequency . 23
2.4 Group Delay . 24
2.5 A Note on Stationarity . 25

3 Gallery of PyTFTB Examples 31
3.1 General examples . 31

4 API Reference 101

5 Indices and tables 103

i

ii

pytftb Documentation, Release 0.0.1

Contents:

CONTENTS 1

pytftb Documentation, Release 0.0.1

2 CONTENTS

CHAPTER

ONE

INTRODUCTION TO PYTFTB

1.1 About PyTFTB

The PyTFTB project began as a Python implementation of the TFTB toolbox developed by François Auger, Olivier
Lemoine, Paulo Gonçalvès and Patrick Flandrin. While the Python implementation (henceforth referred to as PyTFTB)
and the MATLAB implementation (henceforth referred to as TFTB) are similar in the core algorithms and the basic
code organization, the very nature of the Python programming language has motivated a very different approach in
architecture of PyTFTB (differences between the two packages have been discussed in detail in the next section). Thus,
someone who is familiar with TFTB should find the PyTFTB API comfortably within grasp, and someone who is
beginning with PyTFTB should find it a fully self contained library to use.

1.2 Comparison of TFTB and PyTFTB

TFTB is broadly a collection of MATLAB functions and demos that demonstrate the use of these functions. A detailed
reference of these functions can be found here. The fact that Python is a general purpose programming language affords
the users and the developers a lot of freedom, especially with regard to code reuse and interfacing. The important
differences in implementation are as follows:

1. PyTFTB makes heavy use of Python’s object oriented design. This allows for code reuse and interfacing. Algorithms
that are very closely related to each other can inherit from thew same base class and reuse each others methods.

2. In TFTB, visualization of time frequency distributions is handled by dedicated functions like tfrview and tfrqview
whereas in PyTFTB, they are tightly coupled to the specific representation being computed.

3. PyTFTB is heavily dependent on the SciPy stack - especially the NumPy and the SciPy libraries. Whichever piece
of code can be delegated to these libraries is delegated to them.

1.3 Quick Start

1.3.1 Example 1: Linear Frequency Modulation

Let us consider first a signal with constant amplitude, and with a linear frequency modulation - i.e. a signal such that its
amplitude remains constant, but frequency increases linearly with time - varying from 0 to 0.5 in normalized frequency
(ratio of the frequency in Hertz to the sampling frequency, with respect to the Shannon sampling theorem). This signal
is called a chirp, and as its frequency content is varying with time, it is a non-stationary signal. To obtain such a signal,
we can use the function tftb.generators.fmlin, which generates a linear frequency modulation.

3

http://tftb.nongnu.org/
http://tftb.nongnu.org/refguide.pdf

pytftb Documentation, Release 0.0.1

>>> from tftb.generators import amgauss, fmlin
>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> z = amgauss(128, 50, 40) * fmlin(128, 0.05, 0.3, 50)[0]
>>> plt.plot(np.real(z))
>>> plt.title("Linear Frequency Modulation")
>>> plt.show()

0 20 40 60 80 100 120
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Linear Frequency Modulation

From this time-domain representation, it is difficult to say what kind of modulation is contained in this signal: what
are the initial and final frequencies, is it a linear, parabolic, hyperbolic. . . frequency modulation?

If we now consider the energy spectrum of the signal z by squaring the modulus of its Fourier transform (using the
numpy.fft.fft function):

>>> import numpy as np
>>> dsp1 = np.fft.fftshift(np.abs(np.fft.fft(z)) ** 2)
>>> plt.plot(np.arange(-64, 64, dtype=float) / 128.0, dsp1)
>>> plt.xlim(-0.5, 0.5)
>>> plt.title('Spectrum')
>>> plt.ylabel('Squared modulus')
>>> plt.xlabel('Normalized Frequency')
>>> plt.grid()
>>> plt.show()

4 Chapter 1. Introduction to PyTFTB

pytftb Documentation, Release 0.0.1

0.4 0.2 0.0 0.2 0.4
Normalized Frequency

0

50

100

150

200

250

300

350

Sq
ua

re
d

m
od

ul
us

Spectrum

1.3. Quick Start 5

pytftb Documentation, Release 0.0.1

we still can not say, from this plot, anything about the evolution in time of the frequency content. This is due to the fact
that the Fourier transform is a decomposition on complex exponentials, which are of infinite duration and completely
unlocalized in time. Time information is in fact encoded in the phase of the Fourier transform (which is simply ignored
by the energy spectrum), but their interpretation is not straightforward and their direct extraction is faced with a number
of difficulties such as phase unwrapping. In order to have a more informative description of such signals, it would be
better to directly represent their frequency content while still keeping the time description parameter. This is precisely
the aim of time-frequency analysis. To illustrate this, let us try the Wigner-Ville distribution on this signal.

>>> from tftb.processing import WignerVilleDistribution
>>> wvd = WignerVilleDistribution(z)
>>> wvd.run()
>>> wvd.plot(kind='contour', extent=[0, n_points, fmin, fmax])

0 20 40 60 80 100 120
Time

0.0

0.1

0.2

0.3

0.4

0.5

No
rm

al
ize

d
Fr

eq
ue

nc
y

WIGNER-VILLE

we can see that the linear progression of the frequency with time, from 0 to 0.5, is clearly shown.

If we now add some complex white gaussian noise on this signal,

>>> from tftb.generators import sigmerge, noisecg
>>> noisy_signal = sigmerge(z, noisecg(128), 0)
>>> plt.plot(np.real(noisy_signal))
>>> plt.xlim(0, 128)
>>> plt.title('Noisy chirp')
>>> plt.ylabel('Real Part')
>>> plt.xlabel('Time')

(continues on next page)

6 Chapter 1. Introduction to PyTFTB

pytftb Documentation, Release 0.0.1

(continued from previous page)

>>> plt.grid()
>>> plt.show()

0 20 40 60 80 100 120
Time

2

1

0

1

2

Re
al

 P
ar

t

Noisy chirp

and consider the spectrum of it,

>>> dsp1 = np.fft.fftshift(np.abs(np.fft.fft(noisy_signal)) ** 2)
>>> plt.plot(np.arange(-64, 64, dtype=float) / 128.0, dsp1)
>>> plt.xlim(-0.5, 0.5)
>>> plt.title('Spectrum of Noisy Chirp')
>>> plt.ylabel('Squared modulus')
>>> plt.xlabel('Normalized Frequency')
>>> plt.grid()
>>> plt.show()

it is worse than before to interpret these plots. On the other hand, the Wigner-Ville distribution still show quite clearly
the linear progression of the frequency with time.

>>> wvd = WignerVilleDistribution(noisy_signal)
>>> wvd.run()
>>> wvd.plot(kind='contour')

1.3. Quick Start 7

pytftb Documentation, Release 0.0.1

0.4 0.2 0.0 0.2 0.4
Normalized Frequency

0

250

500

750

1000

1250

1500

1750

Sq
ua

re
d

m
od

ul
us

Spectrum of Noisy Chirp

8 Chapter 1. Introduction to PyTFTB

pytftb Documentation, Release 0.0.1

0 20 40 60 80 100 120
Time

0.0

0.1

0.2

0.3

0.4

0.5

No
rm

al
ize

d
Fr

eq
ue

nc
y

WIGNER-VILLE

1.3. Quick Start 9

pytftb Documentation, Release 0.0.1

1.3.2 Example 2: Noisy Transient Signal

The second introductory example is a transient signal embedded in a -5 dB white gaussian noise. This transient signal
is a constant frequency modulated by a one-sided exponential amplitude. The signal and its spectrum are generated as
follows:

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from tftb.generators import amexpos, fmconst, sigmerge, noisecg
>>>
>>> # Generate a noisy transient signal.
>>> transsig = amexpos(64, kind='unilateral') * fmconst(64)[0]
>>> signal = np.hstack((np.zeros((100,)), transsig, np.zeros((92,))))
>>> signal = sigmerge(signal, noisecg(256), -5)
>>> fig, ax = plt.subplots(2, 1)
>>> ax1, ax2 = ax
>>> ax1.plot(np.real(signal))
>>> ax1.grid()
>>> ax1.set_title('Noisy Transient Signal')
>>> ax1.set_xlabel('Time')
>>> ax1.set_xlim((0, 256))
>>> ax1.set_ylim((np.real(signal).max(), np.real(signal.min())))
>>>
>>> # Energy spectrum of the signal
>>> dsp = np.fft.fftshift(np.abs(np.fft.fft(signal)) ** 2)
>>> ax2.plot(np.arange(-128, 128, dtype=float) / 256, dsp)
>>> ax2.set_title('Energy spectrum of noisy transient signal')
>>> ax2.set_xlabel('Normalized frequency')
>>> ax2.grid()
>>> ax2.set_xlim(-0.5, 0.5)
>>>
>>> plt.subplots_adjust(hspace=0.5)
>>>
>>> plt.show()

From these representations, it is difficult to localize precisely the signal in the time-domain as well as in the frequency
domain. Now let us have a look at the spectrogram of this signal:

>>> from scipy.signal import hamming
>>> from tftb.processing import Spectrogram
>>> fwindow = hamming(65)
>>> spec = Spectrogram(signal, n_fbins=128, fwindow=fwindow)
>>> spec.run()
>>> spec.plot(kind="contour", threshold=0.1, show_tf=False)

the transient signal appears distinctly around the normalized frequency 0.25, and between time points 125 and 160.

10 Chapter 1. Introduction to PyTFTB

pytftb Documentation, Release 0.0.1

0 50 100 150 200 250
Time

0.5

0.0

0.5

Noisy Transient Signal

0.4 0.2 0.0 0.2 0.4
Normalized frequency

0

50

100

150

200

Energy spectrum of noisy transient signal

1.3. Quick Start 11

pytftb Documentation, Release 0.0.1

0 50 100 150 200 250
Time

0.0

0.1

0.2

0.3

0.4

0.5

No
rm

al
ize

d
Fr

eq
ue

nc
y

SPECTROGRAM

12 Chapter 1. Introduction to PyTFTB

CHAPTER

TWO

NON STATIONARY SIGNALS

2.1 Frequency Domain Representations

The most straightforward frequency domain representation of a signal is obtained by the Fourier transform of the signal,
defined as:

𝑋(𝜈) =

∫︁ ∞

−∞
𝑥(𝑡)𝑒−𝑗2𝜋𝜈𝑡𝑑𝑡

The spectrum 𝑋(𝜈) is perfectly valid, but the Fourier transform is essentially an integral over time. Thus, we lose
all information that varies with time. All we can tell from the spectrum is that the signal has two distinct frequency
components. In other words, we can comment on what happens a signal, not when it happens. Consider a song as the
signal under consideration. If you were not interested in time, the whole point of processing that signal would be lost.
Rhythm and timing are the very heart of good music, after all. In this case, we want to know when the drums kicked
i , as well as what notes were being played on the guitar. If we perform only frequency analysis, all time information
would be lost and the only information we would have would be about what frequencies were played in the song, and
what their respective amplitudes were, averaged over the duration of the entire song. So even if the drums stop playing
after the second stanza, the frequency spectrum would show them playing throughout the song. Conversely, if we were
only interested in the time information, we would be hardly better off than simply listening to the song.

The solution to this problem is essentially time-frequency analysis which is a field that deals with signal processing in
both time and frequency domain. It consists of a collection of methods that allow us to make tradeoffs between time
and frequency processing of a signal, depending on what makes more sense for a particular application, as we shall see
through the rest of this tutorial.

2.2 The Heisenberg-Gabor Inequality

Before delving into joint time frequency representations, it is necessary to understand that any signal is characterized
in the time-frequncy space by two quantities:

1. The mean position of the signal, defined as pair of two figures: average time (𝑡𝑚) and average frequency (𝜈𝑚)

2. The energy localization of the signal in the time-frequency space, whose area is proportional to the Time-
Bandwidth product. An important constraint related to this quantity is called the Heisenberg-Gabor inequality,
which we shall explore later in this section.

If a signal 𝑥(𝑡) has finite energy, i.e.

𝐸𝑥 =

∫︁ ∞

−∞
|𝑥(𝑡)|2 𝑑𝑡 < ∞

13

https://en.wikipedia.org/wiki/Fourier_transform

pytftb Documentation, Release 0.0.1

then the time and frequency domain energies of the signal can be considered as probability distributions, and their
respective means and standard deviations can be used to estimate the time and frequency localizations and dispersions
of the signal.

• Average time: 𝑡𝑚 = 1
𝐸𝑥

∫︀∞
−∞ 𝑡 |𝑥(𝑡)|2 𝑑𝑡

• Average frequency: 𝜈𝑚 = 1
𝐸𝑥

∫︀∞
−∞ 𝜈 |𝑋(𝜈)|2 𝑑𝜈

• Time spreading: 𝑇 2 = 4𝜋
𝐸𝑥

∫︀∞
−∞(𝑡− 𝑡𝑚)2 |𝑥(𝑡)|2 𝑑𝑡

• Frequency spreading: 𝐵2 = 4𝜋
𝐸𝑥

∫︀∞
−∞(𝜈 − 𝜈𝑚)2 |𝑋(𝜈)|2 𝑑𝜈

Let’s play around with these values with some examples.

2.2.1 Example: Time and Frequency Localizations

Time and frequency localizations can be calculated with the functions tftb.processing.loctime and tftb.
processing.locfreq. Consider a linear chirp with Gaussian amplitude modulation as an example, shown below:

0 50 100 150 200 250
Time

1.0

0.5

0.0

0.5

1.0

Re
al

 p
ar

t

Signal

0.0 0.1 0.2 0.3 0.4 0.5
Normalized frequency

0

200

400

Sq
ua

re
d

m
od

ul
us

Spectrum

>>> from tftb.generators import fmlin, amgauss
>>> from tftb.processing import loctime, locfreq
>>> sig = fmlin(256)[0] * amgauss(256)
>>> t_mean, time_spreading = loctime(sig)
>>> print t_mean, time_spreading

(continues on next page)

14 Chapter 2. Non Stationary Signals

pytftb Documentation, Release 0.0.1

(continued from previous page)

127.0 32.0
>>> f_mean, freq_spreading = locfreq(sig)
>>> print f_mean, freq_spreading
0.249019607843 0.0700964323482

The time-bandwidth product of the signal can be obtained by multiplying the time_spreading and
frequency_spreading variables in the snippet above. An important inequality concering the time bandwidth prod-
uct is called the uncertainty principle. which states that a signal cannot be localized simultaneously in both time and
frequency with arbitrariy high resolution. The next example demonstrates this concept.

2.2.2 Example: The Uncertainty Principle

The uncertainty principle is a very manifest limitation of the Fourier transform. Consider the signal shown here:

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> f1, f2 = 500, 1000
>>> t1, t2 = 0.192, 0.196
>>> f_sample = 8000
>>> n_points = 2048
>>> ts = np.arange(n_points, dtype=float) / f_sample
>>> signal = np.sin(2 * np.pi * f1 * ts) + np.sin(2 * np.pi * f2 * ts)
>>> signal[int(t1 * f_sample) - 1] += 3
>>> signal[int(t2 * f_sample) - 1] += 3
>>> plt.plot(ts, signal)
>>> plt.show()

It is a sum of two sinusiodal signals of frequencies 500 Hz and 1000 Hz. It has two spikes at 𝑡 = 0.192s and 𝑡 = 0.196s.
The purpose of a time frequency distribution would be to clearly identify both the frequencies and both the spikes,
thus resolving events in both frequency and time. Let’s check out the spectrograms of of the signal with four different
window lengths:

As can be clearly seen, resolution in time and frequency cannot be obtained simultaneously. In the last (bottom) image,
where the window length is high, the STFT manages to discriminate between frequencies of 500 Hz and 1000 Hz very
clearly, but the time resolution between the events at t = 0.192 s and t = 0.196 s is ambiguous. As we reduce the length of
the window function, the resolution between the time events goes on becoming better, but only at the cost of resolution
in frequencies.

Informally, the uncertainty principle states that arbitrarily high resolution cannot be obtained in both time and frequency.
This is a consequence of the definition of the Fourier transform. The definition insists that a signal be represented as a
weighted sum of sinusoids, and therefore identifies frequency information that is globally prevalent. As a workaround
to this interpretation, we use the STFT which performs the Fourier transform on limited periods of the signals. Math-
ematically this uncertainty can be quantified with the Heisenberg-Gabor Inequality (also sometimes called the Gabor
limit):

Heisenberg - Gabor Inequality

If 𝑇 and 𝐵 are standard deviations of the time characteristics and the bandwidth respectively of a signal 𝑠(𝑡), then

𝑇𝐵1

2.2. The Heisenberg-Gabor Inequality 15

https://en.wikipedia.org/wiki/Uncertainty_principle#Signal_processing

pytftb Documentation, Release 0.0.1

0.00 0.05 0.10 0.15 0.20 0.25

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

16 Chapter 2. Non Stationary Signals

pytftb Documentation, Release 0.0.1

window duration = 2 ms

window duration = 4 ms

window duration = 8 ms

0.0 0.2 0.4 0.6 0.8 1.0

window duration = 16 ms

2.2. The Heisenberg-Gabor Inequality 17

pytftb Documentation, Release 0.0.1

0.00 0.05 0.10 0.15 0.20 0.25
0

250

500

750

1000

1250

1500

1750

2000

18 Chapter 2. Non Stationary Signals

pytftb Documentation, Release 0.0.1

0.00 0.05 0.10 0.15 0.20 0.25
0

250

500

750

1000

1250

1500

1750

2000

2.2. The Heisenberg-Gabor Inequality 19

pytftb Documentation, Release 0.0.1

0.00 0.05 0.10 0.15 0.20 0.25
0

250

500

750

1000

1250

1500

1750

2000

20 Chapter 2. Non Stationary Signals

pytftb Documentation, Release 0.0.1

0.00 0.05 0.10 0.15 0.20 0.25
0

250

500

750

1000

1250

1500

1750

2000

2.2. The Heisenberg-Gabor Inequality 21

pytftb Documentation, Release 0.0.1

The expression states that the time-bandwidth product of a signal is lower bounded by unity. Gaussian functions satisfy
the equality condition in the equation. This can be verified as follows:

>>> from tftb.generators import fmconst, amgauss
>>> x = gen.amgauss(128) * gen.fmconst(128)[0]
>>> plot(real(x))

0 20 40 60 80 100 120

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Gaussian amplitude modulation

>>> from tftb.processing import loctime, locfreq
>>> time_mean, time_duration = loctime(x)
>>> freq_center, bandwidth = locfreq(x)
>>> time_duration * bandwidth
1.0

A remarkably insightful commentary on the Uncertainty principle is provided in1, which states that the Uncertainty
principle is a statement about two variables whose associated operators do not mutually commute. This helps us apply
the Uncertainty principle in signal processing in the same way as in quantum physics.

1 http://www.amazon.com/Time-Frequency-Analysis-Theory-Applications/dp/0135945321

22 Chapter 2. Non Stationary Signals

http://www.amazon.com/Time-Frequency-Analysis-Theory-Applications/dp/0135945321

pytftb Documentation, Release 0.0.1

2.3 Instantaneous Frequency

An alternative way to localize a signal in time and frequency is its instantaneous frequency. Instantaneous frequencies
are defined for analytic signals, which are defined as follows

𝑥𝑎(𝑡) = 𝑥(𝑡) + 𝑗𝐻(𝑥(𝑡))

where 𝑥(𝑡) is a real valued time domain signal and H denotes the Hilbert transform (scipy.signal.hilbert). From
this defition of the analytic signal, the following quantities can be derived:

• Instantaneous amplitude 𝑎(𝑡) = |𝑥𝑎(𝑡)|

• Instantaneous frequency 𝑓(𝑡) = 1
2𝜋

𝑑
𝑑𝑡𝑎𝑟𝑔(𝑥𝑎(𝑡))

An implementation of these functions can be found in tftb.processing.instfreq

2.3.1 Example: Instantaneous Frequency

>>> from tftb.processign import inst_freq, plotifl
>>> signal, _ = fmlin(256)
>>> time_samples = np.arange(3, 257)
>>> ifr = inst_freq(signal)[0]
>>> plotifl(time_samples, ifr)

50 100 150 200 250
Time

0.0

0.1

0.2

0.3

0.4

0.5

No
rm

al
ize

d
fre

qu
en

cy

Instantaneous frequency law(s)

2.3. Instantaneous Frequency 23

pytftb Documentation, Release 0.0.1

2.4 Group Delay

The frequency domain equivalent of instantaneous frequency is called group delay, which localizes time characteristics
of a signal as function of the frequency.

𝑡𝑥(𝜈) = − 1

2𝜋

𝑑

𝑑𝜈
𝑎𝑟𝑔(𝑋𝑎(𝜈))

2.4.1 Example: Group Delay

The group delay of the signal in the previous example can be obtained as follows

>>> from tftb.processign import group_delay
>>> fnorm = np.linspace(0, .5, 10)
>>> gd = group_delay(signal, fnorm)
>>> plt.plot(gd, fnorm)

0 50 100 150 200 250
Time

0.0

0.1

0.2

0.3

0.4

0.5

No
rm

al
ize

d
Fr

eq
ue

nc
y

Group Delay Estimation

24 Chapter 2. Non Stationary Signals

pytftb Documentation, Release 0.0.1

2.4.2 Example: Comparison of Instantaneous Frequency and Group Delay

Ideally, for a signal localized perfectly in time and frequency, its instantaneous frequency and group delay would be
expected to be identical. However, mathematically they are two different fuctions in the time-frequency space, and
only coincide for signals with high time-bandwidth products. This makes sense, since a high time-bandwidth product
implies that the signal would be pushed away from the Heisenberg-Gabor inequality, thereby leading to lesser ambiguity.
Consider the following example, where we construct two signals - one with a high time-bandwidth product, and one
with a low one - and then estimate their respective instantaneous frequencies and group delays.

>>> # generate a signal with a high TB
>>> time_instants = np.arange(2, 256)
>>> sig1 = amgauss(256, 128, 90) * fmlin(256)[0]
>>> tm, T1 = loctime(sig1)
>>> fm, B1 = locfreq(sig1)
>>> print T1 * B1
15.9138
>>> ifr1 = inst_freq(sig1, time_instants)[0]
>>> f1 = np.linspace(0, 0.5 - 1.0 / 256, 256)
>>> gd1 = group_delay(sig1, f1)
>>>
>>> plt.subplot(211)
>>> plt.plot(time_instants, ifr1, '*', label='inst_freq')
>>> plt.plot(gd1, f1, '-', label='group delay')
>>>
>>> # generate a signal with low TB
>>> sig2 = amgauss(256, 128, 30) * fmlin(256, 0.2, 0.4)[0]
>>> tm, T2 = loctime(sig2)
>>> fm, B2 = locfreq(sig2)
>>> print T2 * B2
1.224
>>> ifr2 = inst_freq(sig2, time_instants)[0]
>>> f2 = np.linspace(0.02, 0.4, 256)
>>> gd2 = group_delay(sig2, f2)
>>>
>>> plt.subplot(212)
>>> plt.plot(time_instants, ifr2, '*', label='inst_freq')
>>> plt.plot(gd2, f2, '-', label='group delay')

2.5 A Note on Stationarity

As per Wikipedia, a “stationary” process is one whose joint probability distribution does not change with time (or
space). Let’s try and see what a stationary process looks like. Consider a signal generated as follows:

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> fs = 32768
>>> ts = np.linspace(0, 1, fs)
>>> y1 = np.sin(2 * np.pi * 697 * ts)
>>> y2 = np.sin(2 * np.pi * 1336 * ts)
>>> y = (y1 + y2) / 2
>>> plt.plot(ts, y)

(continues on next page)

2.5. A Note on Stationarity 25

pytftb Documentation, Release 0.0.1

0 50 100 150 200 250
Time

0.0

0.1

0.2

0.3

0.4

0.5

No
rm

al
ize

d
Fr

eq
ue

nc
y

Group Delay Estimation

26 Chapter 2. Non Stationary Signals

pytftb Documentation, Release 0.0.1

(continued from previous page)

>>> plt.xlim(0, 0.1)
>>> plt.show()

0.00 0.02 0.04 0.06 0.08 0.10

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

The plot shows a slice of a touchtone signal with the duration of a tenth of a second. This is the signal you hear when
you press the “2” key on a telephone dialing pad. (You can save the generated signal as a WAV file as follows:

>>> from scipy.io import wavfile
>>> wavfile.write("tone.wav", fs, y)

and listen to the file tone.wav with your favourite music player.)

Since the signal is composed of two sinusoids, y1 and y2, we would expect it to be stationary. Let’s try and assert this
qualitatively. Let’s try to plot the signal in its phase space. In order to do so, we will first need to construct an analytic
representation of the signal. For simplicity, we shall only consider a part of the original signal

>>> y = y[:(fs / 16)]
>>> y_analytic = hilbert(y)
>>> plt.plot(np.real(y_analytic), np.imag(y_analytic))
>>> plt.xlabel("Real part")
>>> plt.ylabel("Imaginary part")
>>> plt.show()

This visualization can be interpreted as follows. Imagine that there is a vector centered at the origin of this plot which
traces out the signal as it rotates about the origin. Then, at any time 𝑡, the angle which the vector makes with the real

2.5. A Note on Stationarity 27

pytftb Documentation, Release 0.0.1

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Real part

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Im
ag

in
ar

y
pa

rt

28 Chapter 2. Non Stationary Signals

pytftb Documentation, Release 0.0.1

axis is the instantaneous phase of the signal, 𝜃(𝑡). The angular speed with which the phasor rotates is the instantaneous
frequency of the signal:

𝜔(𝑡) =
𝑑

𝑑𝑡
𝜃(𝑡)

Now, let’s compare this phase plot with that of a known nonstationary signal.

>>> from tftb.generators import fmlin, amgauss
>>> y_ns, _ = fmlin(2048) # Already analytic, no need of Hilbert transorm
>>> y_nonstat = y_ns * amgauss(2048)
>>> plt.plot(np.real(y_nonstat), np.imag(y_nonstat))
>>> plt.xlabel("Real part")
>>> plt.ylabel("Imaginary part")
>>> plt.show()

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Real part

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Im
ag

in
ar

y
pa

rt

Notice that the second plot has a lot of rough edges and sharp angles. This means that when the signal vector rotates
through the phase space, it will have to make sharp jumps in order to trace the signal. Moreover, by the definition
of instantaneous frequency, when the instantaneous phase is not differentiable, the instantaneous frequency will be
indeterminate. By contrast, the phase plot for the stationary signal is a lot smoother, and we can expect that the instan-
taneous frequency will be finite at all times. Physically, this means that in the nonstationary signal, the variation in
frequency components has no structure, and these components can change arbitrarily.

2.5. A Note on Stationarity 29

pytftb Documentation, Release 0.0.1

This phenomenon of arbitrary, unstructured changes in frequency over time is a symptom of nonstationarity, and will
become increasingly relevant as we proceed.

30 Chapter 2. Non Stationary Signals

CHAPTER

THREE

GALLERY OF PYTFTB EXAMPLES

3.1 General examples

General-purpose and introductory examples for PyTFTB

3.1.1 Wigner-Ville Distribution of a Dirac Impulse Function

This example demonstrates the Wigner-Ville distribution of a Dirac impulse function, and shows the limitations of the
WV distribution when applied to broadband signals.

Figure 4.24 from the tutorial.

31

pytftb Documentation, Release 0.0.1

from tftb.generators import anapulse
from tftb.processing import WignerVilleDistribution

sig = anapulse(128)
wvd = WignerVilleDistribution(sig)
wvd.run()
wvd.plot(kind="contour", scale="log")

Total running time of the script: (0 minutes 0.400 seconds)

3.1.2 Bertrand Distribution of a Hyperbolic Group Delay Signal

This example shows the Bertrand distribution of a signal with hyperbolic group delay. The distribution is well localized
around the hyperbola, but not perfectly. The Bertrand distribution operates only on a part of the frequency range between
two bounds 𝑓𝑚𝑖𝑛 and 𝑓𝑚𝑎𝑥.

Figure 4.21 from the tutorial.

from tftb.processing.affine import BertrandDistribution
from tftb.generators import gdpower

(continues on next page)

32 Chapter 3. Gallery of PyTFTB Examples

pytftb Documentation, Release 0.0.1

(continued from previous page)

sig = gdpower(128)[0]
bert = BertrandDistribution(sig, fmin=0.01, fmax=0.22)
bert.run()
bert.plot()

Total running time of the script: (0 minutes 0.465 seconds)

3.1.3 Wigner-Ville distribution of a Chirp

This example shows the wireframe plot of the Wigner-Ville distribution of a chirp. The WV distribution can take
negative values, and has almost perfect localization in the time-frequency plane.

Figure 4.1 from the tutorial.

from tftb.generators import fmlin
from tftb.processing import WignerVilleDistribution

sig = fmlin(256)[0]
tfr = WignerVilleDistribution(sig)

(continues on next page)

3.1. General examples 33

pytftb Documentation, Release 0.0.1

(continued from previous page)

tfr.run()
tfr.plot(threshold=0.0, kind='wireframe')

Total running time of the script: (0 minutes 0.289 seconds)

3.1.4 Unterberger distribution of a hyperbolic group delay signal

The active Unterberger distribution is the only localized bi-frequency kernel distribution which localizes perfectly
signals having a group delay in 1/𝜈2

Figure 4.23 from the tutorial.

from tftb.processing import UnterbergerDistribution
from tftb.generators import gdpower

sig = gdpower(128, -1)[0]
dist = UnterbergerDistribution(sig, fmin=0.01, fmax=0.22, n_voices=172)
dist.run()
dist.plot()

Total running time of the script: (0 minutes 0.412 seconds)

34 Chapter 3. Gallery of PyTFTB Examples

pytftb Documentation, Release 0.0.1

3.1.5 D-Flandrin Distribution of a Hyperbolic Group Delay Signal

This example shows the D-Flandrin distribution of a signal having hyperbolic group delay. This is the only type of
distribution that almost perfectly localizes signals having a group delay in 1/

√
𝜈

Figure 4.22 from the tutorial.

from tftb.processing import DFlandrinDistribution
from tftb.generators import gdpower

sig = gdpower(128, 1.0 / 2)[0]
spec = DFlandrinDistribution(sig, fmin=0.01, fmax=0.22, n_voices=128)
spec.run()
spec.plot()

Total running time of the script: (0 minutes 0.405 seconds)

3.1. General examples 35

pytftb Documentation, Release 0.0.1

3.1.6 Wigner Ville distribution of a Gaussian Atom and a Complex Sinusoid

This example demonstrates the Wigner Ville distribution of a signal composed from a Gaussian atom and a complex
sinusoid with constant frequency modulation. Although the representation does isolate the atom and the sinusoid as
independent phenomena in the signal, it also produces some interference between them.

Figure 4.8 from the tutorial.

from tftb.generators import fmconst, amgauss
from tftb.processing import WignerVilleDistribution

sig = fmconst(128, 0.15)[0] + amgauss(128) * fmconst(128, 0.4)[0]
tfr = WignerVilleDistribution(sig)
tfr.run()
tfr.plot(show_tf=True, kind='contour')

Total running time of the script: (0 minutes 0.255 seconds)

36 Chapter 3. Gallery of PyTFTB Examples

pytftb Documentation, Release 0.0.1

3.1.7 Wigner-Ville Distribution of a Noisy Chirp

This example shows the Wigner-Ville distribution of a noisy chirp signal. The linear frequency increase is undetectable
in the time domain, but a straight line can be seen in the distribution.

Figure 5.3 from the tutorial.

from tftb.generators import noisecg, sigmerge, fmlin
from tftb.processing.cohen import WignerVilleDistribution

N = 64
sig = sigmerge(fmlin(N, 0, 0.3)[0], noisecg(N), 1)
wvd = WignerVilleDistribution(sig)
wvd.run()
wvd.plot(kind='contour', show_tf=True, sqmod=True)

Total running time of the script: (0 minutes 0.251 seconds)

3.1. General examples 37

pytftb Documentation, Release 0.0.1

3.1.8 Wigner Ville Distribution of Two Simultaneous Chirps

The signal to be analyzed contains two linear frequency modulations, each with a different slope. Note the interference
between them.

Figure 5.5 from the tutorial.

from tftb.generators import fmlin, sigmerge
from tftb.processing.cohen import WignerVilleDistribution

N = 64
sig = sigmerge(fmlin(N, 0, 0.4)[0], fmlin(N, 0.3, 0.5)[0], 1)
tfr = WignerVilleDistribution(sig)
tfr.run()
tfr.plot(kind='contour', sqmod=True, show_tf=True)

Total running time of the script: (0 minutes 0.253 seconds)

38 Chapter 3. Gallery of PyTFTB Examples

pytftb Documentation, Release 0.0.1

3.1.9 Wigner-Ville Distribution of a Doppler Signal

This example shows the Wigner-Ville distribution of a Doppler signal. The signal steadily rises and falls, but there are
many interference terms present in the time-friequency plane, due to the bilinearity of the signal.

Figure 4.2 from the tutorial.

from tftb.generators import doppler
from tftb.processing import WignerVilleDistribution

fm, am, iflaw = doppler(256, 50.0, 13.0, 10.0, 200.0)
sig = am * fm
dist = WignerVilleDistribution(sig)
tfr, times, freqs = dist.run()
dist.plot(show_tf=True, kind="contour", scale="log")

Total running time of the script: (0 minutes 0.547 seconds)

3.1. General examples 39

pytftb Documentation, Release 0.0.1

3.1.10 Wigner Ville Distribution of Analytic Gaussian Atoms

This example shows the WVD of and analytic Gaussian atom. As seen in Figure 4.6, the WVD of a real valued signal
may present interference terms and spectral aliasing. One of the ways to fix this is to use an analytic signal, which
divides the spectral domain into two parts: real and imaginary. Thus, the number of interference terms is also halved.
Secondly, analytic signals have no negative components, so the terms present in the negative half plane also vanish.

Figure 4.7 from the tutorial.

import numpy as np
from tftb.generators import atoms
from tftb.processing import WignerVilleDistribution

x = np.array([[32, .15, 20, 1],
[96, .32, 20, 1]])

g = atoms(128, x)
spec = WignerVilleDistribution(g)
spec.run()
spec.plot(show_tf=True, kind="contour", scale="log")

Total running time of the script: (0 minutes 0.325 seconds)

40 Chapter 3. Gallery of PyTFTB Examples

pytftb Documentation, Release 0.0.1

3.1.11 Sampling Effects on the Wigner-Ville Distribution of a Real Valued Gaussian
Atom

This example shows the Wigner-Ville distribution of a real valued Gaussian atom. If a signal is sampled at the Nyquist
rate, the WVD is affected by spectral aliasing and many additional interferences. To fix this, either the signal may be
oversampled, or an analytical signal may be used.

Figure 4.6 from the tutorial.

import numpy as np
from tftb.generators import atoms
from tftb.processing import WignerVilleDistribution

x = np.array([[32, .15, 20, 1],
[96, .32, 20, 1]])

g = atoms(128, x)
spec = WignerVilleDistribution(np.real(g))
spec.run()
spec.plot(kind="contour", show_tf=True, scale="log")

Total running time of the script: (0 minutes 0.398 seconds)

3.1. General examples 41

pytftb Documentation, Release 0.0.1

3.1.12 Doppler Signal

Generate a Doppler Signal.

Figure 2.8 from the tutorial.

from tftb.generators import doppler
from numpy import real
import matplotlib.pyplot as plt

fm, am, _ = doppler(256.0, 200.0, 4000.0 / 60.0, 10.0, 50.0)
signal = am * fm

plt.plot(real(signal))
plt.xlabel('Time')
plt.ylabel('Real part')
plt.title('Doppler')
plt.xlim(0, 256)
plt.grid()
plt.show()

Total running time of the script: (0 minutes 0.146 seconds)

42 Chapter 3. Gallery of PyTFTB Examples

pytftb Documentation, Release 0.0.1

3.1.13 Linear Frequency and Gaussian Amplitude Modulation

Generate a mono-component nonstationary signal with linear frequency modulation and Gaussian amplitude modula-
tion.

from tftb.generators import fmlin, amgauss
from numpy import real
import matplotlib.pyplot as plt

fm, _ = fmlin(256)
am = amgauss(256)
signal = fm * am
plt.plot(real(signal))
plt.xlabel('Time')
plt.ylabel('Real part')
plt.title('Linear Frequency, Gaussian Amplitude')
plt.xlim(0, 256)
plt.grid()
plt.show()

Total running time of the script: (0 minutes 0.134 seconds)

3.1. General examples 43

pytftb Documentation, Release 0.0.1

3.1.14 Pseudo-Wigner-Ville Distribution of a Gaussian Atom and a Complex Sinu-
soid

This example demonstrates the pseudo Wigner Ville distribution of a signal composed from a Gaussian atom and a
complex sinusoid with constant frequency modulation. Note that the frequency resolution is relatively worse than that
of the Wigner-Ville representation, and the interferences have not been resolved properly.

Figure 4.9 from the tutorial.

from tftb.generators import fmconst, amgauss
from tftb.processing import PseudoWignerVilleDistribution
import numpy as np

t = np.linspace(0, 1, 128)
sig = fmconst(128, 0.15)[0] + amgauss(128) * fmconst(128, 0.4)[0]
tfr = PseudoWignerVilleDistribution(sig, timestamps=t)
tfr.run()
tfr.plot(show_tf=True, kind="contour")

Total running time of the script: (0 minutes 0.256 seconds)

44 Chapter 3. Gallery of PyTFTB Examples

pytftb Documentation, Release 0.0.1

3.1.15 Wigner-Ville Distribution of a Chirp

Construct a chirp signal and visualize its Wigner-Ville distribution.

Figure 1.3 from the tutorial.

from tftb.generators import fmlin
from tftb.processing.cohen import WignerVilleDistribution

n_points = 128
fmin, fmax = 0.0, 0.5
signal, _ = fmlin(n_points, fmin, fmax)

Wigner-Ville distribution of the chirp.

wvd = WignerVilleDistribution(signal)
wvd.run()
wvd.plot(kind='contour', extent=[0, n_points, fmin, fmax])

Total running time of the script: (0 minutes 0.142 seconds)

3.1. General examples 45

https://en.wikipedia.org/wiki/Wigner_distribution_function

pytftb Documentation, Release 0.0.1

3.1.16 Estimate the Instantaneous Freuqncy of a Chirp

Construct a chirp and estimate its instantaneous frequency.

Figure 2.3 from the tutorial.

from tftb.generators import fmlin
from tftb.processing import plotifl, inst_freq
TODO: There doesn't have to be something called `plotifl`. Put this into a
separate visualization module.
import numpy as np

signal, _ = fmlin(256)
time_samples = np.arange(3, 257)
ifr = inst_freq(signal)[0]
plotifl(time_samples, ifr)

Total running time of the script: (0 minutes 0.122 seconds)

46 Chapter 3. Gallery of PyTFTB Examples

https://en.wikipedia.org/wiki/Instantaneous_phase#Instantaneous_frequency

pytftb Documentation, Release 0.0.1

3.1.17 Time-frequency Resolution: Long Analysis Window

This example shows the effect of an analysis window which is long in time on the time-frequency resolution. Specifi-
cally, longer windows have good frequency resolutions but poor time resolutions.

Figure 3.6 from the tutorial.

import numpy as np
from tftb.processing.linear import ShortTimeFourierTransform
from tftb.generators import fmlin, amgauss
import matplotlib.pyplot as plt

x = np.real(amgauss(128) * fmlin(128)[0])
window = np.ones((128,))
stft = ShortTimeFourierTransform(x, n_fbins=128, fwindow=window)
stft.run()
stft.plot(show_tf=True, cmap=plt.cm.gray)

Total running time of the script: (0 minutes 0.242 seconds)

3.1. General examples 47

pytftb Documentation, Release 0.0.1

3.1.18 Linear Frequency Modulation

This example shows how PyTFTB is used to generate a signal with linear frequency modulation. Such a signal is also
called a chirp.

Figure 1.1 from the tutorial.

from tftb.generators import fmlin
import matplotlib.pyplot as plt
import numpy as np

Generate a chirp signal

n_points = 128
fmin, fmax = 0.0, 0.5

signal, _ = fmlin(n_points, fmin, fmax)
plt.plot(np.real(signal))
plt.xlim(0, n_points)
plt.title('Linear Frequency Modulation')
plt.ylabel('Real Part')
plt.xlabel('Time')
plt.grid()
plt.show()

48 Chapter 3. Gallery of PyTFTB Examples

https://en.wikipedia.org/wiki/Chirp

pytftb Documentation, Release 0.0.1

Total running time of the script: (0 minutes 0.146 seconds)

3.1.19 Wigner-Ville Distribution of Gaussian Atoms

This example shows the WV distribution of four Gaussian atoms, each localized at the corner of a rectangle in the
time-frequency plane. The distribution does show the four signal terms, as well as six interference terms.

Figure 4.4 from the tutorial.

import numpy as np
from tftb.generators import atoms
from tftb.processing import WignerVilleDistribution

x = np.array([[32, .15, 20, 1],
[96, .15, 20, 1],
[32, .35, 20, 1],
[96, .35, 20, 1]])

g = atoms(128, x)
spec = WignerVilleDistribution(g)
spec.run()
spec.plot(kind="contour", show_tf=True, scale="log")

3.1. General examples 49

pytftb Documentation, Release 0.0.1

Total running time of the script: (0 minutes 0.362 seconds)

3.1.20 Ideal time resolution

This example demonstrates that only the shortest possible window can provide ideal resolution in time.

Figure 3.5 from the tutorial.

import numpy as np
from tftb.processing.linear import ShortTimeFourierTransform
from tftb.generators import fmlin, amgauss
from matplotlib.pyplot import cm

x = np.real(amgauss(128) * fmlin(128)[0])
window = np.array([1])
stft = ShortTimeFourierTransform(x, n_fbins=128, fwindow=window)
tfr, _, _ = stft.run()

stft.plot(show_tf=True, cmap=cm.gray)

Total running time of the script: (0 minutes 0.242 seconds)

50 Chapter 3. Gallery of PyTFTB Examples

pytftb Documentation, Release 0.0.1

3.1.21 Spectrogram of Parallel Chirps with Short Gaussian Analysis Window

This example visualizes the spectrogram of two “parallel” chirps, using a Gaussian window function that has a short
length, relative to the length of a signal. The two chirps can be made out, but interference can also be seen along the
frequency axis, since frequency resolution is compromised.

Figure 3.15 from the tutorial.

from tftb.generators import fmlin
from tftb.processing.cohen import Spectrogram
import numpy as np
import matplotlib.pyplot as plt

sig = fmlin(128, 0, 0.4)[0] + fmlin(128, 0.1, 0.5)[0]
window = np.exp(np.log(0.005) * np.linspace(-1, 1, 23) ** 2)
spec = Spectrogram(sig, fwindow=window, n_fbins=128)
spec.run()
spec.plot(show_tf=True, cmap=plt.cm.gray)

Total running time of the script: (0 minutes 0.257 seconds)

3.1. General examples 51

pytftb Documentation, Release 0.0.1

3.1.22 Margenau-Hill Representation of Chirps with Different Slopes

This example demonstrates the Margenau-Hill distribution of a signal composed of two chirps with Gaussian amplitude
modulation but havind linear frequency modulations with different slopes. This distribution too, like the Wigner-Ville
distribution, spearates the signal terms, but produces interferences such that they appear diagonally opposite their
corresponding signals.

Figure 4.14 from the tutorial.

import numpy as np
from tftb.generators import atoms
from tftb.processing import MargenauHillDistribution

sig = atoms(128, np.array([[32, 0.15, 20, 1], [96, 0.32, 20, 1]]))
tfr = MargenauHillDistribution(sig)
tfr.run()
tfr.plot(show_tf=True, kind='contour', sqmod=False, threshold=0,

contour_y=np.linspace(0, 0.5, int(tfr.tfr.shape[0] / 2)))

Total running time of the script: (0 minutes 0.278 seconds)

52 Chapter 3. Gallery of PyTFTB Examples

pytftb Documentation, Release 0.0.1

3.1.23 Distant Chirps with a Short Gaussian Analysis Window

Figure 3.17 from the tutorial.

from tftb.generators import fmlin
from tftb.processing.cohen import Spectrogram
import numpy as np
import matplotlib.pyplot as plt

sig = fmlin(128, 0, 0.3)[0] + fmlin(128, 0.2, 0.5)[0]
window = np.exp(np.log(0.005) * np.linspace(-1, 1, 23) ** 2)
spec = Spectrogram(sig, fwindow=window, n_fbins=128)
spec.run()
spec.plot(show_tf=True, cmap=plt.cm.gray)

Total running time of the script: (0 minutes 0.256 seconds)

3.1. General examples 53

pytftb Documentation, Release 0.0.1

3.1.24 Distant Chirps with a Long Gaussian Analysis Window

This example visualizes a spectrogram of two chirp signals which are well separated in frequency ranges. A longer
Gaussian analysis window suffices here to see the separation of frequencies, since the variation in frequencies is rela-
tively slow.

Figure 3.18 from the tutorial.

from tftb.generators import fmlin
from tftb.processing.cohen import Spectrogram
import numpy as np
import matplotlib.pyplot as plt

sig = fmlin(128, 0, 0.3)[0] + fmlin(128, 0.2, 0.5)[0]
window = np.exp(np.log(0.005) * np.linspace(-1, 1, 63) ** 2)
spec = Spectrogram(sig, fwindow=window, n_fbins=128)
spec.run()
spec.plot(show_tf=True, cmap=plt.cm.gray)

Total running time of the script: (0 minutes 0.255 seconds)

54 Chapter 3. Gallery of PyTFTB Examples

pytftb Documentation, Release 0.0.1

3.1.25 Spectrogram of Parallel Chirps with a Long Gaussian Analysis Window

This example visualizes the spectrogram of two “parallel” chirps, using a Gaussian window function that has a long
length, relative to the length of a signal. The two chirps can be made out, but interference can also be seen along the
time axis, since time resolution is compromised.

Figure 3.16 from the tutorial.

from tftb.generators import fmlin
from tftb.processing.cohen import Spectrogram
import numpy as np
import matplotlib.pyplot as plt

sig = fmlin(128, 0, 0.4)[0] + fmlin(128, 0.1, 0.5)[0]
window = np.exp(np.log(0.005) * np.linspace(-1, 1, 63) ** 2)
spec = Spectrogram(sig, fwindow=window, n_fbins=128)
spec.run()
spec.plot(show_tf=True, cmap=plt.cm.gray)

Total running time of the script: (0 minutes 0.255 seconds)

3.1. General examples 55

pytftb Documentation, Release 0.0.1

3.1.26 Wigner-Ville Distribution of Chirps with Different Slopes

This example demonstrates the Wigner-Ville distribution of a signal composed of two chirps with Gaussian amplitude
modulation but havind linear frequency modulations with different slopes. Note that the AF interference terms are
located away from the origin. We can see the two distint signal terms, but there is some interference around the middle.

Figure 4.12 from the tutorial.

from tftb.generators import fmlin, amgauss
from tftb.processing import WignerVilleDistribution
import numpy as np

n_points = 64
sig1 = fmlin(n_points, 0.2, 0.5)[0] * amgauss(n_points)
sig2 = fmlin(n_points, 0.3, 0)[0] * amgauss(n_points)
sig = np.hstack((sig1, sig2))

tfr = WignerVilleDistribution(sig)
tfr.run()
tfr.plot(kind='contour', show_tf=True)

Total running time of the script: (0 minutes 0.251 seconds)

56 Chapter 3. Gallery of PyTFTB Examples

pytftb Documentation, Release 0.0.1

3.1.27 Wideband Ambiguity Function of an Altes Signal

For wideband signals, the narrow band ambiguity function is not appropriate for wideband signals. So we consider a
wide band ambiguity function. This function is equivalent to the wavelet transform of a signal whose mother wavelet
is the signal itself.

Figure 4.25 from the tutorial.

from tftb.generators import altes
from tftb.processing.ambiguity import wide_band
import matplotlib.pyplot as plt
import numpy as np

signal = altes(128, 0.1, 0.45)
waf, tau, theta = wide_band(signal, 0.1, 0.35, 64)
plt.contour(tau, theta, np.abs(waf) ** 2)
plt.xlabel("Delay")
plt.ylabel("Log(Scale)")
plt.title("Wide Band Ambiguity Function")
plt.show()

Total running time of the script: (0 minutes 0.161 seconds)

3.1. General examples 57

pytftb Documentation, Release 0.0.1

3.1.28 Monocomponent Nonstationary Signal with Constant Frequency Modulation
and One-Sided Exponential Amplitude Modulation

Generate a monocomponent nonstationary signal with constant frequency modulation and one-sided exponential am-
plitude modulation.

Figure 2.7 from the tutorial.

from tftb.generators import fmconst, amexpos
import matplotlib.pyplot as plt
from numpy import real

fm, _ = fmconst(256, 0.2)
am = amexpos(256, 100, kind='unilateral')
signal = am * fm

plt.plot(real(signal))
plt.xlabel('Time')
plt.ylabel('Real part')
plt.title('Constant Frequency, One-sided Exponential Amplitude')
plt.xlim(0, 256)
plt.grid()
plt.show()

Total running time of the script: (0 minutes 0.132 seconds)

58 Chapter 3. Gallery of PyTFTB Examples

pytftb Documentation, Release 0.0.1

3.1.29 Group Delay Estimation of a Chirp

Constuct a chirp and estimates its group delay.

Figure 2.4 from the tutorial.

from tftb.generators import fmlin
from tftb.processing import group_delay
import numpy as np
import matplotlib.pyplot as plt

signal, _ = fmlin(256)
fnorm = np.linspace(0, .5, 10)
gd = group_delay(signal, fnorm)
plt.plot(gd, fnorm)
plt.grid(True)
plt.xlim(0, 256)
plt.xlabel('Time')
plt.ylabel('Normalized Frequency')
plt.title('Group Delay Estimation')
plt.show()

Total running time of the script: (0 minutes 0.127 seconds)

3.1. General examples 59

https://en.wikipedia.org/wiki/Group_delay_and_phase_delay

pytftb Documentation, Release 0.0.1

3.1.30 Pseudo Wigner-Ville Distribution of Gaussian Atoms

This example shows the Pseudo Wigner-Ville distribution of four Gaussian atoms located at the corners of a rectangle
in the time-frequency plane. The PseudoWignerVilleDistribution class uses frequency smoothing, which attenuates
the interferences oscillating along the time axis.

Figure 4.5 from the tutorial.

/home/docs/checkouts/readthedocs.org/user_builds/tftb/envs/stable/lib/python3.7/site-
→˓packages/matplotlib/contour.py:1180: ComplexWarning: Casting complex values to real␣
→˓discards the imaginary part
self.levels = np.asarray(levels_arg).astype(np.float64)

import numpy as np
from tftb.generators import atoms
from tftb.processing import PseudoWignerVilleDistribution

(continues on next page)

60 Chapter 3. Gallery of PyTFTB Examples

pytftb Documentation, Release 0.0.1

(continued from previous page)

x = np.array([[32, .15, 20, 1],
[96, .15, 20, 1],
[32, .35, 20, 1],
[96, .35, 20, 1]])

g = atoms(128, x)
t = np.linspace(0, 1, 128)
spec = PseudoWignerVilleDistribution(g, timestamps=t)
spec.run()
spec.plot(kind="contour", scale="log", show_tf=True)

Total running time of the script: (0 minutes 0.338 seconds)

3.1.31 Wigner-Ville Distribution of a Noisy Chirp

Generate a noisy chirp and visualize its Wigner-Ville spectrum.

Figure 1.6 from the tutorial.

from tftb.generators import fmlin, sigmerge, noisecg
from tftb.processing.cohen import WignerVilleDistribution

Generate a chirp signal
(continues on next page)

3.1. General examples 61

pytftb Documentation, Release 0.0.1

(continued from previous page)

n_points = 128
fmin, fmax = 0.0, 0.5

signal, _ = fmlin(n_points, fmin, fmax)

Noisy chirp

noisy_signal = sigmerge(signal, noisecg(128), 0)

Wigner-Ville spectrum of noisy chirp.

wvd = WignerVilleDistribution(noisy_signal)
wvd.run()
wvd.plot(kind='contour')

Total running time of the script: (0 minutes 0.190 seconds)

3.1.32 Generating a Noisy Chirp

This example shows how to generate a chirp signal, with some analytical gaussian noise, and the usage of the sigmerge
function to combine them.

Figure 1.4 from the tutorial.

62 Chapter 3. Gallery of PyTFTB Examples

pytftb Documentation, Release 0.0.1

from tftb.generators import fmlin, sigmerge, noisecg
import matplotlib.pyplot as plt
import numpy as np

Generate a chirp signal

n_points = 128
fmin, fmax = 0.0, 0.5

signal, _ = fmlin(n_points, fmin, fmax)

Noisy chirp

noisy_signal = sigmerge(signal, noisecg(128), 0)
plt.plot(np.real(noisy_signal))
plt.xlim(0, 128)
plt.title('Noisy chirp')
plt.ylabel('Real Part')
plt.xlabel('Time')
plt.grid()
plt.show()

Total running time of the script: (0 minutes 0.131 seconds)

3.1. General examples 63

pytftb Documentation, Release 0.0.1

3.1.33 Biorthonormal Window Function

Figure 3.10 from the tutorial.

from tftb.generators import fmlin
from tftb.processing.linear import gabor
import matplotlib.pyplot as plt
import numpy as np

N1 = 256
Ng = 33
Q = 1
sig = fmlin(N1)[0]
window = np.exp(np.log(0.005) * np.linspace(-1, 1, Ng) ** 2)
window = window / np.linalg.norm(window)
tfr, dgr, h = gabor(sig, 16, Q, window)
plt.plot(h)
plt.ylim(top=0.5)
plt.xlim(right=255)
plt.title('Biorthonormal Window')
plt.grid()
plt.show()

Total running time of the script: (0 minutes 0.133 seconds)

64 Chapter 3. Gallery of PyTFTB Examples

pytftb Documentation, Release 0.0.1

3.1.34 Noisy Monocomponent Chirp

This example demonstrates the construction of a monocomponent signal with linear frequency modulation and colored
Gaussian noise.

Figure 2.9 from the tutorial.

from tftb.generators import fmlin, amgauss, noisecg, sigmerge
from numpy import real
import matplotlib.pyplot as plt

fm, _ = fmlin(256)
am = amgauss(256)
signal = fm * am

noise = noisecg(256, .8)
sign = sigmerge(signal, noise, -10)

plt.plot(real(sign))
plt.xlabel('Time')
plt.ylabel('Real part')
plt.title('Gaussian transient signal embedded in -10 dB colored Gaussian noise')
plt.xlim(0, 256)
plt.grid()

(continues on next page)

3.1. General examples 65

pytftb Documentation, Release 0.0.1

(continued from previous page)

plt.show()

Total running time of the script: (0 minutes 0.145 seconds)

3.1.35 STFT of Gaussian Wave Packets with a Hamming Analysis Window

This example demonstrates the construction of a signal containing two transient components, having the same Gaussian
amplitude modulation and the same frequency, but different time centers. It also shows the effect of a Hamming window
function when used with th STFT.

Figure 3.7 from the tutorial.

import numpy as np
import matplotlib.pyplot as plt
from tftb.generators import atoms
from scipy.signal import hamming
from tftb.processing.linear import ShortTimeFourierTransform

coords = np.array([[45, .25, 32, 1], [85, .25, 32, 1]])
sig = atoms(128, coords)

(continues on next page)

66 Chapter 3. Gallery of PyTFTB Examples

pytftb Documentation, Release 0.0.1

(continued from previous page)

x = np.real(sig)
window = hamming(65)
stft = ShortTimeFourierTransform(sig, n_fbins=128, fwindow=window)
stft.run()
stft.plot(show_tf=True, cmap=plt.cm.gray)

Total running time of the script: (0 minutes 0.244 seconds)

3.1.36 Time-frequency Resolution: Short Analysis Window

This example shows the effect of an analysis window which is short in time on the time-frequency resolution. Specifi-
cally, smaller windows have good time resolutions but poor frequency resolutions.

Figure 3.8 from the tutorial.

import numpy as np
import matplotlib.pyplot as plt
from tftb.generators import atoms
from scipy.signal import hamming
from tftb.processing.linear import ShortTimeFourierTransform

(continues on next page)

3.1. General examples 67

pytftb Documentation, Release 0.0.1

(continued from previous page)

coords = np.array([[45, .25, 32, 1], [85, .25, 32, 1]])
sig = atoms(128, coords)
x = np.real(sig)
window = hamming(17)
stft = ShortTimeFourierTransform(sig, n_fbins=128, fwindow=window)
stft.run()
stft.plot(show_tf=True, cmap=plt.cm.gray)

Total running time of the script: (0 minutes 0.244 seconds)

3.1.37 Energy Spectral Density of a Chirp

Construct a chirp and plot its energy spectral density.

Figure 1.2 from the tutorial.

from tftb.generators import fmlin
import matplotlib.pyplot as plt
import numpy as np

n_points = 128
(continues on next page)

68 Chapter 3. Gallery of PyTFTB Examples

https://en.wikipedia.org/wiki/Spectral_density#Energy_spectral_density

pytftb Documentation, Release 0.0.1

(continued from previous page)

fmin, fmax = 0.0, 0.5
signal, _ = fmlin(n_points, fmin, fmax)

Plot the energy spectrum of the chirp

dsp1 = np.fft.fftshift(np.abs(np.fft.fft(signal)) ** 2)
plt.plot(np.arange(-64, 64, dtype=float) / 128.0, dsp1)
plt.xlim(-0.5, 0.5)
plt.title('Spectrum')
plt.ylabel('Squared modulus')
plt.xlabel('Normalized Frequency')
plt.grid()
plt.show()

Total running time of the script: (0 minutes 0.131 seconds)

3.1.38 Narrow Band Ambiguity Function of Chirps with Different Slopes

This example demonstrates the narrow band ambiguity function (AF) of a signal composed of two chirps with Gaussian
amplitude modulation but havind linear frequency modulations with different slopes. Note that the AF interference
terms are located away from the origin.

Figure 4.13 from the tutorial.

3.1. General examples 69

pytftb Documentation, Release 0.0.1

from tftb.generators import fmlin, amgauss
from tftb.processing.ambiguity import narrow_band
import numpy as np
import matplotlib.pyplot as plt

n_points = 64
sig1 = fmlin(n_points, 0.2, 0.5)[0] * amgauss(n_points)
sig2 = fmlin(n_points, 0.3, 0)[0] * amgauss(n_points)
sig = np.hstack((sig1, sig2))

tfr, x, y = narrow_band(sig)
plt.contour(2 * x, y, np.abs(tfr) ** 2, 16)
plt.title('Narrow Band ambiguity function')
plt.xlabel('Delay')
plt.ylabel('Doppler')
plt.grid(True)
plt.show()

Total running time of the script: (0 minutes 0.135 seconds)

3.1.39 STFT of an Audio Signal

Figure 3.4 from the tutorial.

70 Chapter 3. Gallery of PyTFTB Examples

pytftb Documentation, Release 0.0.1

from os.path import dirname, abspath, join
from scipy.io import loadmat
import numpy as np
import matplotlib.pyplot as plt

DATA_PATH = join(abspath(dirname("__file__")), "data", "gabor.mat")
signal = loadmat(DATA_PATH)['gabor'].ravel()
tfr = loadmat(DATA_PATH)['tfr']
time = np.arange(338)
freq = np.arange(128, dtype=float) / 256.0 * 1000

plt.contour(time, freq, tfr)
plt.grid(True)
plt.xlabel('Time [ms]')
plt.ylabel('Frequency [Hz]')
plt.title('Squared modulus of the STFT of the word GABOR')
plt.show()

Total running time of the script: (0 minutes 0.146 seconds)

3.1.40 Spectrogram of a Noisy Transient Signal

This example demonstrates the simple use of a Spectrogram to localize a signal in time and frequency. The transient
signal appears at the normalized frequency 0.25 and between time points 125 and 160.

Figure 1.11 from the tutorial.

3.1. General examples 71

pytftb Documentation, Release 0.0.1

import numpy as np
from scipy.signal import hamming
from tftb.generators import amexpos, fmconst, sigmerge, noisecg
from tftb.processing.cohen import Spectrogram

Generate a noisy transient signal.
transsig = amexpos(64, kind='unilateral') * fmconst(64)[0]
signal = np.hstack((np.zeros((100,)), transsig, np.zeros((92,))))
signal = sigmerge(signal, noisecg(256), -5)

fwindow = hamming(65)
spec = Spectrogram(signal, n_fbins=128, fwindow=fwindow)
spec.run()
spec.plot(kind="contour", threshold=0.1, show_tf=False)

Total running time of the script: (0 minutes 0.147 seconds)

72 Chapter 3. Gallery of PyTFTB Examples

pytftb Documentation, Release 0.0.1

3.1.41 Morlet Scalogram of a Dirac Impulse

This example plots the scalogram of a Dirac impulse functions. This shows the behaviour of the scalograms as the
scale (or inversely, the frequency) changes. it is well localized for small scales (large frequencies), and less localized
as the scale increases (as the frequency decreases).

Figure 3.19 from the tutorial.

from tftb.generators import anapulse
from tftb.processing import Scalogram
import numpy as np
import matplotlib.pyplot as plt

sig1 = anapulse(128)
tfr, t, f, _ = Scalogram(sig1, waveparams=6, fmin=0.05, fmax=0.45,

n_voices=128).run()
tfr = np.abs(tfr) ** 2
threshold = np.amax(tfr) * 0.05
tfr[tfr <= threshold] = 0.0
t, f = np.meshgrid(t, f)
plt.contour(t, f, tfr, 20)
plt.grid()
plt.title('Morlet Scalogram of a Dirac Impluse')
plt.xlabel('Time')

(continues on next page)

3.1. General examples 73

pytftb Documentation, Release 0.0.1

(continued from previous page)

plt.ylabel('Normalized Frequency')
plt.show()

Total running time of the script: (0 minutes 0.165 seconds)

3.1.42 Gabor Representation of a Chirp

Figure 3.11 from the tutorial.

from tftb.generators import fmlin
from tftb.processing.linear import gabor
import matplotlib.pyplot as plt
import numpy as np

N1 = 256
Ng = 33
Q = 1
sig = fmlin(N1)[0]
window = np.exp(np.log(0.005) * np.linspace(-1, 1, Ng) ** 2)
window = window / np.linalg.norm(window)
tfr, dgr, h = gabor(sig, 16, Q, window)

(continues on next page)

74 Chapter 3. Gallery of PyTFTB Examples

pytftb Documentation, Release 0.0.1

(continued from previous page)

plt.imshow(np.flipud(tfr)[8:, :], aspect='auto', extent=[0, 16, 0, 0.5],
interpolation='none')

plt.xlabel('Time')
plt.ylabel('Normalized frequency')
plt.title('Squared modulus of the Gabor coefficients')
plt.show()

Total running time of the script: (0 minutes 0.134 seconds)

3.1.43 Energy Spectrum of a Noisy Chirp

Generate a noisy chirp and plot its energy spectrum.

Figure 1.5 from the tutorial.

from tftb.generators import fmlin, sigmerge, noisecg
import matplotlib.pyplot as plt
import numpy as np

Generate a chirp signal

n_points = 128
(continues on next page)

3.1. General examples 75

pytftb Documentation, Release 0.0.1

(continued from previous page)

fmin, fmax = 0.0, 0.5

signal, _ = fmlin(n_points, fmin, fmax)

Noisy chirp

noisy_signal = sigmerge(signal, noisecg(128), 0)

Enery spectrum of the noisy chirp.

dsp1 = np.fft.fftshift(np.abs(np.fft.fft(noisy_signal)) ** 2)
plt.plot(np.arange(-64, 64, dtype=float) / 128.0, dsp1)
plt.xlim(-0.5, 0.5)
plt.title('Spectrum of Noisy Chirp')
plt.ylabel('Squared modulus')
plt.xlabel('Normalized Frequency')
plt.grid()
plt.show()

Total running time of the script: (0 minutes 0.134 seconds)

3.1.44 Wigner-Hough Transform of a Chirp

This example demonstrates the use of the Hough transform to extract the estimates of a chirp signal from its Wigner
Ville distribution.

Figure 5.4 from the tutorial.

76 Chapter 3. Gallery of PyTFTB Examples

pytftb Documentation, Release 0.0.1

/home/docs/checkouts/readthedocs.org/user_builds/tftb/checkouts/stable/doc/_gallery/plot_
→˓5_4_2_hough_noisy_chirp.py:34: MatplotlibDeprecationWarning: Calling gca() with␣
→˓keyword arguments was deprecated in Matplotlib 3.4. Starting two minor releases later,␣
→˓gca() will take no keyword arguments. The gca() function should only be used to get␣
→˓the current axes, or if no axes exist, create new axes with default keyword arguments.␣
→˓To create a new axes with non-default arguments, use plt.axes() or plt.subplot().
ax = fig.gca(projection='3d')

import numpy as np
from tftb.generators import noisecg, sigmerge, fmlin
from tftb.processing.cohen import WignerVilleDistribution
from tftb.processing.postprocessing import hough_transform
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

N = 64
sig = sigmerge(fmlin(N, 0, 0.3)[0], noisecg(N), 1)
tfr, _, _ = WignerVilleDistribution(sig).run()

(continues on next page)

3.1. General examples 77

pytftb Documentation, Release 0.0.1

(continued from previous page)

ht, rho, theta = hough_transform(tfr, N, N)
theta, rho = np.meshgrid(theta, rho)
fig = plt.figure()
ax = fig.gca(projection='3d')
ax.plot_wireframe(theta, rho, ht)
ax.set_xlabel('Theta')
ax.set_ylabel('Rho')
plt.show()

Total running time of the script: (0 minutes 1.980 seconds)

3.1.45 Hough-Wigner Transform of Two Simultaneous Chirps

Compute the Hough transform of the Wigner-Ville distribution of a signal composed of two chirps. Two peaks corre-
sponding to the two chirps can be seen.

Figure 5.6 from the tutorial.

/home/docs/checkouts/readthedocs.org/user_builds/tftb/checkouts/stable/doc/_gallery/plot_
→˓5_4_2_hough_simultaneous_chirp.py:34: MatplotlibDeprecationWarning: Calling gca() with␣
→˓keyword arguments was deprecated in Matplotlib 3.4. Starting two minor releases later,␣

(continues on next page)

78 Chapter 3. Gallery of PyTFTB Examples

pytftb Documentation, Release 0.0.1

(continued from previous page)

→˓gca() will take no keyword arguments. The gca() function should only be used to get␣
→˓the current axes, or if no axes exist, create new axes with default keyword arguments.␣
→˓To create a new axes with non-default arguments, use plt.axes() or plt.subplot().
ax = fig.gca(projection='3d')

from tftb.generators import fmlin, sigmerge
from tftb.processing.cohen import WignerVilleDistribution
from tftb.processing.postprocessing import hough_transform
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt

N = 64
sig = sigmerge(fmlin(N, 0, 0.4)[0], fmlin(N, 0.3, 0.5)[0], 1)
tfr, _, _ = WignerVilleDistribution(sig).run()

ht, rho, theta = hough_transform(tfr, N, N)
theta, rho = np.meshgrid(theta, rho)
fig = plt.figure()
ax = fig.gca(projection='3d')
ax.plot_wireframe(theta, rho, ht)
ax.set_xlabel('Theta')
ax.set_ylabel('Rho')
plt.show()

Total running time of the script: (0 minutes 1.783 seconds)

3.1.46 Gabor Representation of a Chirp with Oversampling

Figure 3.13 from the tutorial.

3.1. General examples 79

pytftb Documentation, Release 0.0.1

from tftb.generators import fmlin
from tftb.processing.linear import gabor
import matplotlib.pyplot as plt
import numpy as np

N1 = 256
Ng = 33
Q = 4
sig = fmlin(N1)[0]
window = np.exp(np.log(0.005) * np.linspace(-1, 1, Ng) ** 2)
window = window / np.linalg.norm(window)
tfr, dgr, h = gabor(sig, 32, Q, window)
time = np.arange(256)
freq = np.linspace(0, 0.5, 128)
plt.imshow(np.flipud(tfr)[8:, :], aspect='auto', extent=[0, 32, 0, 0.5],

interpolation='none')
plt.xlabel('Time')
plt.ylabel('Normalized frequency')
plt.title('Squared modulus of the Gabor coefficients')
plt.show()

Total running time of the script: (0 minutes 0.127 seconds)

80 Chapter 3. Gallery of PyTFTB Examples

pytftb Documentation, Release 0.0.1

3.1.47 Energy Spectrum of an Audio Signal

Figure 3.3 from the tutorial.

from os.path import dirname, abspath, join
from scipy.io import loadmat
import numpy as np
import matplotlib.pyplot as plt

DATA_PATH = join(abspath(dirname("__file__")), "data", "gabor.mat")
signal = loadmat(DATA_PATH)['gabor'].ravel()
time = np.arange(338)
dsp = np.fft.fftshift(np.abs(np.fft.fft(signal)) ** 2)
freq = np.arange(-169, 169, dtype=float) / 338 * 1000

plt.subplot(211)
plt.plot(time, signal)
plt.grid(True)
plt.xlim(0, time.max())
plt.xlabel('Time (ms)')

plt.subplot(212)
plt.plot(dsp)
plt.grid(True)

(continues on next page)

3.1. General examples 81

pytftb Documentation, Release 0.0.1

(continued from previous page)

plt.title('Spectrum')
plt.xlabel('Frequency (Hz)')

plt.subplots_adjust(hspace=0.5)

plt.show()

Total running time of the script: (0 minutes 0.170 seconds)

3.1.48 Friedman’s Instantaneous Frequency Density Calculation

This example uses Friedman’s method to calculate the instantaneous frequency density of a hybrid signal. The method
consists of computing the histograms of frequency displacements of the spectrogram of the signal.

Figure 4.38 from the tutorial.

import numpy as np
import matplotlib.pyplot as plt
from tftb.generators import fmlin, fmsin, fmconst
from tftb.processing.reassigned import pseudo_wigner_ville
from tftb.processing.postprocessing import friedman_density

(continues on next page)

82 Chapter 3. Gallery of PyTFTB Examples

pytftb Documentation, Release 0.0.1

(continued from previous page)

sig1, if1 = fmsin(60, 0.16, 0.35, 50, 1, 0.35, 1)
sig2, if2 = fmlin(60, 0.3, 0.1)
sig3, if3 = fmconst(60, 0.4)
sig = np.hstack((sig1, np.zeros((8,)), sig2 + sig3))

t = np.arange(1, 128, step=2)
tfr, rtfr, hat = pseudo_wigner_ville(sig, timestamps=t)
tifd = friedman_density(tfr, hat, t)
f = np.linspace(0, 0.5, tifd.shape[0])

plt.contour(t, f, tifd, 4)
plt.grid(True)
plt.title("Friedman's instantaenous frequency density")
plt.xlabel('Time')
plt.ylabel('Frequency')
plt.show()

Total running time of the script: (0 minutes 0.184 seconds)

3.1.49 Time and Frequency Localization Characteristics

Generate a signal that has localized characteristics in both time and frequency and compute the following estimates:

• time center

• time duration

• frequency center

• frequency spreading

Example 2.1 from the tutorial.

3.1. General examples 83

pytftb Documentation, Release 0.0.1

Time Center: 127.0
Time Duration: 31.999999999999996
Frequency Center: 0.2490196078431372
Frequency Spreading: 0.07009643234823572

from tftb.generators import fmlin, amgauss
from tftb.processing import loctime, locfreq
import numpy as np
import matplotlib.pyplot as plt

generate signal
signal = fmlin(256)[0] * amgauss(256)
plt.subplot(211), plt.plot(np.real(signal))
plt.xlim(0, 256)
plt.xlabel('Time')
plt.ylabel('Real part')
plt.title('Signal')
plt.grid()

(continues on next page)

84 Chapter 3. Gallery of PyTFTB Examples

pytftb Documentation, Release 0.0.1

(continued from previous page)

fsig = np.fft.fftshift(np.abs(np.fft.fft(signal)) ** 2)
plt.subplot(212), plt.plot(np.linspace(0, 0.5, 256), fsig)
plt.xlabel('Normalized frequency')
plt.ylabel('Squared modulus')
plt.title('Spectrum')
plt.grid()
plt.subplots_adjust(hspace=0.5)
plt.show()

tm, T = loctime(signal)
print("Time Center: {}".format(tm))
print("Time Duration: {}".format(T))
num, B = locfreq(signal)
print("Frequency Center: {}".format(num))
print("Frequency Spreading: {}".format(B))

Total running time of the script: (0 minutes 0.171 seconds)

3.1.50 Instantatneous Frequency and Group Delay Estimation of a Multi-
Component Nonstationary Signal

Figure 2.10 from the tutorial.

3.1. General examples 85

pytftb Documentation, Release 0.0.1

N=128; x1=fmlin(N,0,0.2); x2=fmlin(N,0.3,0.5);
x=x1+x2;
ifr=instfreq(x); subplot(211); plot(ifr);
fn=0:0.01:0.5; gd=sgrpdlay(x,fn);
subplot(212); plot(gd,fn);
from tftb.generators import fmlin
from tftb.processing import inst_freq, group_delay
import matplotlib.pyplot as plt
import numpy as np

N = 128
x1, _ = fmlin(N, 0, 0.2)
x2, _ = fmlin(N, 0.3, 0.5)
x = x1 + x2
ifr = inst_freq(x)[0]
fn = np.arange(0.51, step=0.01)
gd = group_delay(x, fn)

plt.subplot(211)
plt.plot(ifr)
plt.xlim(1, N)
plt.grid(True)
plt.title('Instantaneous Frequency')

(continues on next page)

86 Chapter 3. Gallery of PyTFTB Examples

pytftb Documentation, Release 0.0.1

(continued from previous page)

plt.xlabel('Time')
plt.ylabel('Normalized Frequency')

plt.subplot(212)
plt.plot(gd, fn)
plt.xlim(1, N)
plt.grid(True)
plt.title('Group Delay')
plt.xlabel('Time')
plt.ylabel('Normalized Frequency')

plt.subplots_adjust(hspace=0.5)

plt.show()

Total running time of the script: (0 minutes 0.199 seconds)

3.1.51 Heisenbeg-Gabor Inequality

This example demonstrates the Heisenberg-Gabor inequality.

Simply put, the inequality states that the time-bandwidth product of a signal is lower bound by some constant (in
this case normalized to unity). This means that a signal cannot have arbitrarily high precision in time and frequency
simultaneously.

Figure 2.2 from the tutorial.

3.1. General examples 87

https://en.wikipedia.org/wiki/Uncertainty_principle#Signal_processing

pytftb Documentation, Release 0.0.1

Time Center: 126.99999999999999
Time Duration: 31.999999999999996
Frequency Center: 0.0
Frequency Spreading: 0.031249999999999997
Time-bandwidth product: 0.9999999999999998

from tftb.generators import amgauss
from tftb.processing import loctime, locfreq
import numpy as np
import matplotlib.pyplot as plt

generate signal
signal = amgauss(256)
plt.subplot(211), plt.plot(np.real(signal))
plt.xlim(0, 256)
plt.xlabel('Time')
plt.ylabel('Real part')
plt.title('Signal')

(continues on next page)

88 Chapter 3. Gallery of PyTFTB Examples

pytftb Documentation, Release 0.0.1

(continued from previous page)

plt.grid()
fsig = np.fft.fftshift(np.abs(np.fft.fft(signal)) ** 2)
plt.subplot(212), plt.plot(np.linspace(0, 0.5, 256), fsig)
plt.xlabel('Normalized frequency')
plt.ylabel('Squared modulus')
plt.title('Spectrum')
plt.grid()
plt.subplots_adjust(hspace=0.5)
plt.show()

tm, T = loctime(signal)
print("Time Center: {}".format(tm))
print("Time Duration: {}".format(T))
fm, B = locfreq(signal)
print("Frequency Center: {}".format(fm))
print("Frequency Spreading: {}".format(B))
print("Time-bandwidth product: {}".format(T * B))

Total running time of the script: (0 minutes 0.172 seconds)

3.1.52 Spectrum of a Noisy Transient Signal

This example shows how to generate a noisy transient signal with the following characteristics:

• One-sided exponential amplitude modulation (See amexpos)

• Constant frequency modulation (See fmconst)

• -5 dB complex gaussian noise (See noisecg and sigmerge)

And how to plot its energy spectrum.

Figure 1.10 of the tutorial.

3.1. General examples 89

pytftb Documentation, Release 0.0.1

import numpy as np
import matplotlib.pyplot as plt
from tftb.generators import amexpos, fmconst, sigmerge, noisecg

Generate a noisy transient signal.
transsig = amexpos(64, kind='unilateral') * fmconst(64)[0]
signal = np.hstack((np.zeros((100,)), transsig, np.zeros((92,))))
signal = sigmerge(signal, noisecg(256), -5)
fig, ax = plt.subplots(2, 1)
ax1, ax2 = ax
ax1.plot(np.real(signal))
ax1.grid()
ax1.set_title('Noisy Transient Signal')
ax1.set_xlabel('Time')
ax1.set_xlim((0, 256))
ax1.set_ylim((np.real(signal).max(), np.real(signal.min())))

Energy spectrum of the signal
dsp = np.fft.fftshift(np.abs(np.fft.fft(signal)) ** 2)
ax2.plot(np.arange(-128, 128, dtype=float) / 256, dsp)
ax2.set_title('Energy spectrum of noisy transient signal')
ax2.set_xlabel('Normalized frequency')
ax2.grid()

(continues on next page)

90 Chapter 3. Gallery of PyTFTB Examples

pytftb Documentation, Release 0.0.1

(continued from previous page)

ax2.set_xlim(-0.5, 0.5)

plt.subplots_adjust(hspace=0.5)

plt.show()

Total running time of the script: (0 minutes 0.169 seconds)

3.1.53 Comparison of a Spectrogram and a Reassigned Spectrogram

This example compares the spectrogram and the reassigned spectrogram of a hybrid signal (containing sinusoidal,
constant and linear frequency modulations), against its ideal time-frequency characteristics.

Figure 4.34 from the tutorial.

/home/docs/checkouts/readthedocs.org/user_builds/tftb/envs/stable/lib/python3.7/site-
→˓packages/tftb/processing/reassigned.py:543: ComplexWarning: Casting complex values to␣
→˓real discards the imaginary part
rtfr[int(jcolhat), int(icolhat) - 1] += tfr[jcol, icol]

/home/docs/checkouts/readthedocs.org/user_builds/tftb/envs/stable/lib/python3.7/site-
→˓packages/numpy/ma/core.py:2830: ComplexWarning: Casting complex values to real␣

(continues on next page)

3.1. General examples 91

pytftb Documentation, Release 0.0.1

(continued from previous page)

→˓discards the imaginary part
order=order, subok=True, ndmin=ndmin)

from tftb.generators import fmsin, fmhyp
from tftb.processing import ideal_tfr, reassigned_spectrogram, Spectrogram
import numpy as np
import matplotlib.pyplot as plt

n_points = 128
sig1, if1 = fmsin(n_points, 0.15, 0.45, 100, 1, 0.4, -1)
sig2, if2 = fmhyp(n_points, [1, .5], [32, 0.05])
sig = sig1 + sig2
ideal, t, f = ideal_tfr(np.vstack((if1, if2)))
_, re_spec, _ = reassigned_spectrogram(sig)
spec, t3, f3 = Spectrogram(sig).run()

Ideal tfr
plt.subplot(221)
plt.contour(t, f, ideal, 1)
plt.grid(True)
plt.gca().set_xticklabels([])
plt.title("Ideal time-frequency distro")
plt.ylabel('Normalized Frequency')

Spectrogram
plt.subplot(222)
plt.contour(t3, f3[:64], spec[:64, :])
plt.grid(True)
plt.gca().set_xticklabels([])
plt.title("Spectrogram")

Reassigned Spectrogram
plt.subplot(212)
f = np.linspace(0, 0.5, 64)
plt.contour(np.arange(128), f, re_spec[:64, :])
plt.grid(True)
plt.title("Reassigned Spectrogram")
plt.xlabel('Time')
plt.ylabel('Normalized Frequency')

plt.show()

Total running time of the script: (0 minutes 0.723 seconds)

92 Chapter 3. Gallery of PyTFTB Examples

pytftb Documentation, Release 0.0.1

3.1.54 Comparison of Instantaneous Frequency and Group Delay

Instantaneous frequency and group delay are very closely related. The former is the frequency of a signal at a given
instant, and the latter is the time delay of frequency components. As this example shows, they coincide with each other
for a given signal when the time bandwidth product of the signal is sufficiently high.

Figure 2.5 from the tutorial.

import numpy as np
import matplotlib.pyplot as plt
from tftb.generators import amgauss, fmlin
from tftb.processing import loctime, locfreq, inst_freq, group_delay

time_instants = np.arange(2, 256)
sig1 = amgauss(256, 128, 90) * fmlin(256)[0]
tm, T1 = loctime(sig1)
fm, B1 = locfreq(sig1)
ifr1 = inst_freq(sig1, time_instants)[0]
f1 = np.linspace(0, 0.5 - 1.0 / 256, 256)
gd1 = group_delay(sig1, f1)

plt.subplot(211)
plt.plot(time_instants, ifr1, '*', label='inst_freq')
plt.plot(gd1, f1, '-', label='group delay')

(continues on next page)

3.1. General examples 93

pytftb Documentation, Release 0.0.1

(continued from previous page)

plt.xlim(0, 256)
plt.grid(True)
plt.legend()
plt.title("Time-Bandwidth product: {0}".format(T1 * B1))
plt.xlabel('Time')
plt.ylabel('Normalized Frequency')

sig2 = amgauss(256, 128, 30) * fmlin(256, 0.2, 0.4)[0]
tm, T2 = loctime(sig2)
fm, B2 = locfreq(sig2)
ifr2 = inst_freq(sig2, time_instants)[0]
f2 = np.linspace(0.02, 0.4, 256)
gd2 = group_delay(sig2, f2)

plt.subplot(212)
plt.plot(time_instants, ifr2, '*', label='inst_freq')
plt.plot(gd2, f2, '-', label='group delay')
plt.ylim(0.2, 0.4)
plt.xlim(0, 256)
plt.grid(True)
plt.legend()
plt.title("Time-Bandwidth product: {0}".format(T2 * B2))
plt.xlabel('Time')
plt.ylabel('Normalized Frequency')

plt.subplots_adjust(hspace=0.5)

plt.show()

Total running time of the script: (0 minutes 0.243 seconds)

3.1.55 Morlet Scalogram of Gaussian Atoms

This example demonstrates the effect of frequency-dependent smoothing that is accomplished in a Morlet scalogram.
Note that the localization at lower frequencies is much better.

Figure 4.18 from the tutorial.

94 Chapter 3. Gallery of PyTFTB Examples

pytftb Documentation, Release 0.0.1

from tftb.processing import Scalogram
from tftb.generators import atoms
import numpy as np
from mpl_toolkits.axes_grid1 import make_axes_locatable
import matplotlib.pyplot as plt

sig = atoms(128, np.array([[38, 0.1, 32, 1], [96, 0.35, 32, 1]]))
tfr, t, freqs, _ = Scalogram(sig, fmin=0.05, fmax=0.45,

time_instants=np.arange(1, 129)).run()
t, f = np.meshgrid(t, freqs)

fig, axContour = plt.subplots()
axContour.contour(t, f, tfr)
axContour.grid(True)
axContour.set_title("Morlet scalogram of complex sinusoids")
axContour.set_ylabel('Frequency')
axContour.yaxis.set_label_position('right')
axContour.set_xlabel('Time')

divider = make_axes_locatable(axContour)
axTime = divider.append_axes("top", 1.2, pad=0.5)
axFreq = divider.append_axes("left", 1.2, pad=0.5)
axTime.plot(np.real(sig))

(continues on next page)

3.1. General examples 95

pytftb Documentation, Release 0.0.1

(continued from previous page)

axTime.set_xticklabels([])
axTime.set_xlim(0, 128)
axTime.set_ylabel('Real part')
axTime.set_title('Signal in time')
axTime.grid(True)
freq_y = np.linspace(0, 0.5, int(sig.shape[0] / 2))
freq_x = (abs(np.fft.fftshift(np.fft.fft(sig))) ** 2)[::-1][:64]
ix = np.logical_and(freq_y >= 0.05, freq_y <= 0.45)
axFreq.plot(freq_x[ix], freq_y[ix])
axFreq.set_ylim(0.05, 0.45)
axFreq.set_yticklabels([])
axFreq.set_xticklabels([])
axFreq.grid(True)
axFreq.set_ylabel('Spectrum')
axFreq.invert_xaxis()
axFreq.grid(True)
plt.show()

Total running time of the script: (0 minutes 0.230 seconds)

3.1.56 Morlet Scalogram of a Multicomponent Signal

This example demonstrates the visualization of the Morlet scalogram of a signal containing two complex sinusoids.
In a scalogram, the frequency resolution varies on the scale of the signal. Here, the frequency resolution decreases at
higher frequencies (lower scale).

Figure 3.20 from the tutorial.

96 Chapter 3. Gallery of PyTFTB Examples

pytftb Documentation, Release 0.0.1

from tftb.processing import Scalogram
from tftb.generators import fmconst
import numpy as np
from mpl_toolkits.axes_grid1 import make_axes_locatable
import matplotlib.pyplot as plt

sig2 = fmconst(128, .15)[0] + fmconst(128, .35)[0]
tfr, t, freqs, _ = Scalogram(sig2, time_instants=np.arange(1, 129), waveparams=6,

fmin=0.05, fmax=0.45, n_voices=128).run()
tfr = np.abs(tfr) ** 2
threshold = np.amax(tfr) * 0.05
tfr[tfr <= threshold] = 0.0
t, f = np.meshgrid(t, freqs)

fig, axContour = plt.subplots(figsize=(10, 8))
axContour.contour(t, f, tfr)
axContour.grid(True)
axContour.set_title("Morlet scalogram")
axContour.set_ylabel('Frequency')
axContour.yaxis.set_label_position('right')
axContour.set_xlabel('Time')

(continues on next page)

3.1. General examples 97

pytftb Documentation, Release 0.0.1

(continued from previous page)

divider = make_axes_locatable(axContour)
axTime = divider.append_axes("top", 1.2, pad=0.5)
axFreq = divider.append_axes("left", 1.2, pad=0.5)
axTime.plot(np.real(sig2))
axTime.set_xticklabels([])
axTime.set_xlim(0, 128)
axTime.set_ylabel('Real part')
axTime.set_title('Signal in time')
axTime.grid(True)
freq_y = np.linspace(0, 0.5, int(sig2.shape[0] / 2))
freq_x = (abs(np.fft.fftshift(np.fft.fft(sig2))) ** 2)[::-1][:64]
axFreq.plot(freq_x, freq_y)
axFreq.set_ylim(0.05, 0.45)
axFreq.set_yticklabels([])
axFreq.set_xticklabels([])
axFreq.grid(True)
axFreq.set_ylabel('Spectrum')
axFreq.invert_xaxis()
axFreq.grid(True)
plt.show()

Total running time of the script: (0 minutes 0.270 seconds)

3.1.57 Short time Fourier transform of a multi-component nonstationary signal

Compute and visualize the STFT of a multi component nonstationary signal.

Figure 2.11 from the tutorial.

98 Chapter 3. Gallery of PyTFTB Examples

https://en.wikipedia.org/wiki/Short-time_Fourier_transform

pytftb Documentation, Release 0.0.1

from tftb.generators import fmlin
from tftb.processing.linear import ShortTimeFourierTransform
import matplotlib.pyplot as plt
from scipy.signal import hamming
import numpy as np
from mpl_toolkits.axes_grid1 import make_axes_locatable

N = 128
x1, _ = fmlin(N, 0, 0.2)
x2, _ = fmlin(N, 0.3, 0.5)
x = x1 + x2

n_fbins = 128
window = hamming(33)
tfr, _, _ = ShortTimeFourierTransform(x, timestamps=None, n_fbins=n_fbins,

fwindow=window).run()
tfr = tfr[:64, :]
threshold = np.amax(np.abs(tfr)) * 0.05
tfr[np.abs(tfr) <= threshold] = 0.0 + 1j * 0.0
tfr = np.abs(tfr) ** 2
t = np.arange(tfr.shape[1])

(continues on next page)

3.1. General examples 99

pytftb Documentation, Release 0.0.1

(continued from previous page)

f = np.linspace(0, 0.5, tfr.shape[0])

T, F = np.meshgrid(t, f)

fig, axScatter = plt.subplots(figsize=(10, 8))
axScatter.contour(T, F, tfr, 5)
axScatter.grid(True)
axScatter.set_title('Squared modulus of STFT')
axScatter.set_ylabel('Frequency')
axScatter.yaxis.set_label_position("right")
axScatter.set_xlabel('Time')
divider = make_axes_locatable(axScatter)
axTime = divider.append_axes("top", 1.2, pad=0.5)
axFreq = divider.append_axes("left", 1.2, pad=0.5)
axTime.plot(np.real(x))
axTime.set_xticklabels([])
axTime.set_xlim(0, N)
axTime.set_ylabel('Real part')
axTime.set_title('Signal in time')
axTime.grid(True)
axFreq.plot((abs(np.fft.fftshift(np.fft.fft(x))) ** 2)[::-1][:64], f[:64])
axFreq.set_yticklabels([])
axFreq.set_xticklabels([])
axFreq.invert_xaxis()
axFreq.set_ylabel('Spectrum')
axFreq.grid(True)
plt.show()

Total running time of the script: (0 minutes 0.266 seconds)

100 Chapter 3. Gallery of PyTFTB Examples

CHAPTER

FOUR

API REFERENCE

101

pytftb Documentation, Release 0.0.1

102 Chapter 4. API Reference

CHAPTER

FIVE

INDICES AND TABLES

• genindex

• modindex

• search

103

	Introduction to PyTFTB
	About PyTFTB
	Comparison of TFTB and PyTFTB
	Quick Start
	Example 1: Linear Frequency Modulation
	Example 2: Noisy Transient Signal

	Non Stationary Signals
	Frequency Domain Representations
	The Heisenberg-Gabor Inequality
	Example: Time and Frequency Localizations
	Example: The Uncertainty Principle

	Instantaneous Frequency
	Example: Instantaneous Frequency

	Group Delay
	Example: Group Delay
	Example: Comparison of Instantaneous Frequency and Group Delay

	A Note on Stationarity

	Gallery of PyTFTB Examples
	General examples
	Wigner-Ville Distribution of a Dirac Impulse Function
	Bertrand Distribution of a Hyperbolic Group Delay Signal
	Wigner-Ville distribution of a Chirp
	Unterberger distribution of a hyperbolic group delay signal
	D-Flandrin Distribution of a Hyperbolic Group Delay Signal
	Wigner Ville distribution of a Gaussian Atom and a Complex Sinusoid
	Wigner-Ville Distribution of a Noisy Chirp
	Wigner Ville Distribution of Two Simultaneous Chirps
	Wigner-Ville Distribution of a Doppler Signal
	Wigner Ville Distribution of Analytic Gaussian Atoms
	Sampling Effects on the Wigner-Ville Distribution of a Real Valued Gaussian Atom
	Doppler Signal
	Linear Frequency and Gaussian Amplitude Modulation
	Pseudo-Wigner-Ville Distribution of a Gaussian Atom and a Complex Sinusoid
	Wigner-Ville Distribution of a Chirp
	Estimate the Instantaneous Freuqncy of a Chirp
	Time-frequency Resolution: Long Analysis Window
	Linear Frequency Modulation
	Wigner-Ville Distribution of Gaussian Atoms
	Ideal time resolution
	Spectrogram of Parallel Chirps with Short Gaussian Analysis Window
	Margenau-Hill Representation of Chirps with Different Slopes
	Distant Chirps with a Short Gaussian Analysis Window
	Distant Chirps with a Long Gaussian Analysis Window
	Spectrogram of Parallel Chirps with a Long Gaussian Analysis Window
	Wigner-Ville Distribution of Chirps with Different Slopes
	Wideband Ambiguity Function of an Altes Signal
	Monocomponent Nonstationary Signal with Constant Frequency Modulation and One-Sided Exponential Amplitude Modulation
	Group Delay Estimation of a Chirp
	Pseudo Wigner-Ville Distribution of Gaussian Atoms
	Wigner-Ville Distribution of a Noisy Chirp
	Generating a Noisy Chirp
	Biorthonormal Window Function
	Noisy Monocomponent Chirp
	STFT of Gaussian Wave Packets with a Hamming Analysis Window
	Time-frequency Resolution: Short Analysis Window
	Energy Spectral Density of a Chirp
	Narrow Band Ambiguity Function of Chirps with Different Slopes
	STFT of an Audio Signal
	Spectrogram of a Noisy Transient Signal
	Morlet Scalogram of a Dirac Impulse
	Gabor Representation of a Chirp
	Energy Spectrum of a Noisy Chirp
	Wigner-Hough Transform of a Chirp
	Hough-Wigner Transform of Two Simultaneous Chirps
	Gabor Representation of a Chirp with Oversampling
	Energy Spectrum of an Audio Signal
	Friedman’s Instantaneous Frequency Density Calculation
	Time and Frequency Localization Characteristics
	Instantatneous Frequency and Group Delay Estimation of a Multi-Component Nonstationary Signal
	Heisenbeg-Gabor Inequality
	Spectrum of a Noisy Transient Signal
	Comparison of a Spectrogram and a Reassigned Spectrogram
	Comparison of Instantaneous Frequency and Group Delay
	Morlet Scalogram of Gaussian Atoms
	Morlet Scalogram of a Multicomponent Signal
	Short time Fourier transform of a multi-component nonstationary signal

	API Reference
	Indices and tables

